

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 13

DYNAMIC EXTRACTION OF DATA TYPES IN ANDROID’S
DALVIK VIRTUAL MACHINE

Paulo R. Nunes de Souza, Pavel Gladyshev

Digital Forensics Investigation Research Laboratory,
University College Dublin, Ireland

ABSTRACT

This paper describes a technique to acquire statistical information on the type of data object that goes into
volatile memory. The technique was designed to run in Android devices and it was tested in an emulated
Android environment. It consists in inserting code in the Dalvik interpreter forcing that, in execution time,
every data that goes into memory is logged alongside with its type. At the end of our tests we produced
Probability Distribution information that allowed us to collect important statistical information that made us
distinguish memory values between references (Class, Exception, Object, String), Float and Integer types.
The result showed this technique could be used to identify data objects of interest, in a emulated
environment, assisting in interpretation of volatile memory evidence extracted from real devices.

Keywords: Android, Dalvik, memory analysis.

1. INTRODUCTION

In digital forensic investigations, it is sometimes
necessary to analyse and interpret raw binary data
fragments extracted from the system memory,
pagefile, or unallocated disk space. Event if the
precise data format is not known, the expert can
often find useful information by looking for human
readable ASCII strings, URLs, and easily
identifiable binary data values such as Windows
FILETIME timestamps and SIDs. Figure 1 shows
an example of a memory dump, where a
FILETIME timestamp can be easily seen (a
sequence of 8 random binary values ending in 01).
To date, the bulk of digital forensic research
focused on Microsoft Windows platform, this paper
describes a systematic experimental study to find
(classes of) easily identifiable binary data values in
Android platform.

Figure 1: Hexadecimal view of a memory dump

2. BACKGROUND

Traditional digital forensics relies on evidences
found in persistent storages. This is mainly due to
the need to both sides of the litigation to reproduce
and verify every forensic finding. The persistent
storage can be forensically copied, providing a
controllable way to repeat the analysis, getting to
the same results.

An alternative way is to combine the traditional
forensics with the so called live forensics. The live
forensics relies on evidences found in volatile
memory to draw conclusions. This type of evidence
features a lesser level of control and repeatability if
compared with traditional evidences. On the other
hand, live evidences may unravel key information
to the progress of a case. However, the question
regarding the reliability of the live evidence
remains in place, mainly in two moments: the
memory acquisition and the memory analysis.

In the memory acquisition front, law enforcements
and researchers are working to establish standard
procedures to be used. These procedures could be
based on physical or logical extraction. The
physical extraction could need disassembling of the
device or the use of JTAG as done by Breeuwsma

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 14

[2006]. The logical extraction can be more diverse,
from interacting with the system with user
privileges as done by Yen et al. [2009]; it could
also gain system privileges through a kernel
module as done by Sylve et al. [2012]; even use a
virtual machine layer to have free access to the
memory like done by Guangqi et al. [2014], among
others. Regardless of the extraction method, there
will be the need to analyse the extracted data.

One challenge faced when analysing a memory
dump is that application data is stored in memory
following the algorithms of the program owning
that memory space. Being aware of the variety of
software running on nowadays devices, the task of
interpreting the device’s extracted memory is
complex. Some researchers are tackling this
challenge taking different approaches. Volatility
[2015] provides a customizable way to identify
kernel data structures from memory dumps; Lin et
al. [2011] used graph-based signatures to identify
kernel data structures, Hilgers et al. [2014] uses the
Volatility framework to identify structures beyond
the kernel ones, identifying static classes in the
Android system.

A deeper memory analysis tool that would
consistently interpret data structures from
application software has not yet being developed.
The in-depth memory analysis is normally done in
a adhoc basis, interpreting the memory dump from
the light of the reversed engineered application’s
source code, as done by Lin [2011]. A broader
approach, that would not depend on the
application’s source code, could be powerful to
deep memory analysis.

This approach, not based on the application source
code, would have advantages and disadvantages.
As an advantage, this approach could be used in
situations where the source code is unknown,
unavailable, or legally disallowed to be reversed
engineered. On the other hand, without the source
code to deterministically assert the meaning of each
memory cell, this method would need to take a
probabilistic approach. The foundation for such
approach is a probabilistic understanding of the
memory data associated with their respective type.
This paper uses the Android OS as environment to
present a technique to gather the memory
information associated with its type, making
possible to have an probabilistic understanding of

that data.

3. ANDROID STRUCTURE

The Android OS is an Operating System based on
Linux, with extensions and modifications,
maintained by Google. The OS was designed to run
on a large variety of devices sharing same common
characteristics [Ehringer, 2010]: (1) limited RAM;
(2) little processing power; (3) no swap space; (4)
powered by battery; (5) diverse hardware; (6)
sandboxed application runtime.

Figure 2: Architecture of Android OS

To provide a system that could run on such diverse
and resource limited devices, they decided to build
a multi-layered OS(Figure 2). The 5 layers are: (1)
Linux kernel; (2) Hardware Abstraction Layer
(HAL); (3) Android runtime and Native libraries;
(4) Android framework; (5) Applications.

The Android OS is an hybrid of compiled and
interpreted system. The boundary between
compiled and interpreted execution is the Android
runtime. The versions of the Android used in our
experiments (android-2.3.6 r1 and android-4.3
r2.1) feature Dalvik Virtual Machine (Dalvik VM)
in the runtime package. All the programs running in
the layers underneath Dalvik VM are compiled and
all programs running in the layers above Dalvik
VM are interpreted. The Dalvik VM hosts
programs that were written in a Java syntax,
compiled to an intermediary code level called
bytecode and then packed to be loaded into Dalvik.
When the software is launched inside Dalvik VM,
each line of bytecode is interpreted into the
machine code, normally in ARM architecture.

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 15

The Dalvik VM is implemented as a registerbased
virtual machine. This mean that the instructions
operate on virtual registers, being those virtual
registers memory positions in the host device. The
instruction set provided by the Dalvik VM consists
of a maximum of 256 instructions, being some of
them currently unused. Part of the used instructions
is type specific, being those the ones chosen to be
used to collect data and type information.

The Dalvik VM instruction set is grouped in some
categories: binop/lit8 is the set of binary operations
receiving as one of the arguments a literal of 8 bits;
binop/lit16 is the set of binary operations receiving
as one of the arguments a literal of 16 bits;
binop/2addr is the set of binary operations with
only two registers as arguments, being the result
stored in the first register provided; binop is the set
of binary operations with three registers as
arguments, two source registers and one destination
register; unop is the set of unary operations with
two registers as arguments, one source register and
one destination register; staticop is the set of
operations that perform over static object fields;
instanceop is the set of operations that perform
over instance object fields; arrayop is the set of
operations that perform over array fields; cmpkind
is the set of operations that perform comparison
between two floating point or long; const is the set
of operations that move a given literal to a register;
move is the set of operations that move the content
of a register to another register.

Each of those categories has a number of
instructions specifically designed to operate over
some data type. The whole instruction set
distinguishes 12 data types, namely: (1) Boolean;
(2) Byte; (3) Char; (4) Class; (5) Double; (6)
Exception; (7) Float; (8) Integer; (9) Long; (10)
Object; (11) Short; (12) String.

4. MODULAR INTERPRETER (MTERP)

As the Android OS is open source, the source code
of the OS [Google, 2015], including the Dalvik
VM, is available to be downloaded and modified.
By inspecting the Dalvik VM source code in
details, it was possible to identify that the
interpreter2 would be a strong candidate to host the

2 The interpreter is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp

data collecting code. The features that most suit our
needs are: (1) there is an different entry for each
bytecode instruction, called opcode; (2) several of
the opcodes of the Dalvik VM are type related.
Therefore, it is a good point to place the code
designed to collect the data, relating values and
types that goes to memory.

Even though the Dalvik interpreter is conceptually
the central point from where every single line of
Dalvik bytecode should pass through, there is one
exception. The Android OS features an
optimization element called Just In Time (JIT)
compilation that can bypass the Dalvik interpreter
[Google, 2010]. The JIT compiler is designed to
identify the most demanded tracks of code that run
over the Dalvik VM. After identified, those tracks
would be compiled and, next time they were
demanded, the JIT would call the compiled track,
instead of calling the interpreter. This way, the code
we use to collect our data would not be executed
and the collected data would not be accurate.

JIT configuration # of instructions logged
WITH JIT = true 2,676,540
WITH JIT = false 3,643,739

Table 1: Number of instructions logged during the
Android booting process

In our tests, the JIT compiler would skip, on
average, 26.5% of the type bearing instructions
during the Android booting process(Table 1). To
avoid this source of error, it was necessary to
deactivate the JIT compiler on our test Android OS.
The Android system contains an environment
variable WITH JIT that is used to deploy an
Android system with or without JIT. In order to
deactivate the Just In Time compilation, we edited
the makefile Android.mk3 and forced the WITH
JIT to be set to false.

Having deactivated the JIT, it is necessary to insert
the logging code into the interpreter. The interpreter
source code is put together in a modular fashion,
for this reason it is called modular interpreter
(mterp). For each target architecture variant there
will be a configuration file in the mterp folder4. The

3 The Android.mk is located on the following directory of the
Android source tree: /android/dalvik/vm
4 The mterp folder is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 16

configuration will define, for each Dalvik VM
instruction, which version of ARM architecture will
be used and where the corresponding source code is
located. In order to log all the designed instructions,
several ARM source code files, scattered in the
mterp folder, will need to be edit accordingly, and
any extra subroutine could be inserted in the file
footer.S. After all the codes are edited, it is required
to run a script called rebuild.sh, located in the
mterp folder, that will deploy the interpreter5.
Finally, the Android system, that will contain the
modified interpreter, need to be built.

When executing the deployed Android OS, the data
extraction takes place. The extracted data is stored
in a single file with one entry per line as shown in
Listing 1. The key information we can find in each
entry are the two last columns, containing the type
and the hexadecimal value stored in memory.

Listing 1: Unprocessed log sample

D(285:298) Object = <0x41a1fc68>
D(285:298) Int = <0x00034769>
D(285:298) Object = <0x41a1fc68>
D(285:298) Int = <0x00011db5>
D(285:298) Byte = <0x2f>
D(285:298) Int = <0x00000000>
D(285:298) Int = <0x0000002f>
D(285:298) Char = <0x2f>

Having this file, we process it to separate one data
type on each file and exclude any extra information
apart from the hexadecimal value, as depicted in
the Figure 3.

5 The interpreter is located on the following directory of the
Android source tree: /android/dalvik/vm/mterp/out!

Figure 3: Log processing

Summing up, to extract the memory values
associated with their respective types we needed to
do the following:

• deactivate the JIT Compiler from an
Android OS;

• inject code in the Dalvik Interpreter to log
types and values on each interpreted
typebearing instruction ;

• run the adjusted Android OS to collect data
on the logs;

• process the logged data;

The deactivation of the JIT compiler and the
modification in the Dalvik interpreted code,
expectedly, generated an execution overhead.
Considering the average booting time, the logging

procedure seems to have effected more the
response time than the JIT deactivation. The Table
2 shows the average booting times with and without
JIT, as well as with and without the logging code.

 Log = off Log = on

WITH JIT = true 62s 2176s
WITH JIT = false 62s 3026s

Table 2: Average booting time in seconds

5. RESULTS

Having all the processed logs, it was possible to
extract some statistical information from them. The
Table 3 shows in what proportion each type appear

Log
Processing mterp.log

Android
Emulator

Boolean.log

Byte.log

. . .

String.log

Extraction

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 17

in the logs. The table makes clear that the Int type
prevail over the other types, with 54.3% of the
appearances. Other types with a rather common rate
of occurrence are Byte (8.17%), Char (13.19%) and
Object (24.00%). The remainder of the types have a
percentage lower than 1%.

Type # of occurrences % of total
Bool 6,512 0.1787%
Byte 297,578 8.1668%
Char 444,163 12.1898%
Class 1,454 0.0399%
Double 836 0.0229%
Exception 168 0.0046%
Float 6,374 0.1749%
Int 1,978,652 54.3028%
Long 7,837 0.2151%
Object 874,196 23.9917%
Short 3,034 0.0833%
String 22,935 0.6294%
Total 3,643,739 100.0000%

Table 3: Booting time in seconds

At this point, the 32-bit types are being highlighted.
They are: (1) Class; (2) Exception; (3) Float; (4)
Integer; (5) Object; (6) String. Each of those 6
types have its own probability distribution of values
plotted on the Figure 4.

From the distributions it is possible to spot the
similarity among the types: (1) Class; (2)
Exception; (3) Object; (4) String. All 4 of them
have a predominant peak a little after the value
0x4000000. This similarity can be explained by the
fact that those 4 types are indeed references,
therefore, pointers to a memory address. If focusing
only on the values around 0x40000000, the Float
type could be confused with the reference ones,
because it also displays a peak around 0x40000000,
however a much broader one, moreover, it has an
second lower peak around 0xc0000000. The Int
type displays occurrences along the whole spectrum
of values, featuring two more relevant peaks. One
peak around 0x00000000 and the other peak around
0xffffffff. Those two peaks could be explained by
an greater occurrence of integer with small absolute
values, being them of positive and negative signal,
respectively.

Figure 4: Probability distribution of values by 32-
bit type (Log scale)

6. CONCLUSION

This paper explained a technique to capture
memory data along with their corresponding data
type in an emulated Android OS. This technique
required deactivation of the optimization process
called Just In Time compilation and the
modification of the interpreter ARM code. The
technique creates an expected overhead on the
Android execution time. As this technique was only
designed to run in emulated Android, this overhead
is not an issue. The technique allowed us to collect
important statistical information that made us
distinguish memory values between references
(Class, Exception, Object, String), Float and Integer

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering

 18

types. Beyond this specific test case, this technique
could be use to build an statistical data corpus of
Android memory content. This data corpus may
become a tile on the work of paving the ground to
the development of a consistent deep memory
analysis tool.

7. ACKNOWLEDGEMENTS

This work was supported by research grants (BEX
9072/13-6) from Science Without Borders
implemented by CAPES Foundation, an agency
under the Ministry of Education of Brazil.

REFERENCES

Ing. M.F. Breeuwsma. Forensic imaging of
embedded systems using JTAG (boundary-scan).
Digital Investigation, 3 (1):32 – 42, 2006. ISSN
1742-2876. doi:
http://dx.doi.org/10.1016/j.diin.2006.01.003.

David Ehringer. The dalvik virtual machine
architecture, 2010.

Google. Google i/o 2010 - a jit compiler for
android’s dalvik vm. Google Developers, May
2010. URL www.youtube.com/watch?v=Ls0tM-
c4Vfo. Accessed 6th March 2015.

Google. Android source code repository. repo,
2015. URL https://android.googlesource.com/
plataform/manifest. Accessed 11th February
2015.

Liu Guangqi, Wang Lianhai, Zhang Shuhui, Xu
Shujiang, and Zhang Lei. Memory dump and
forensic analysis based on virtual machine. In
Mechatronics and Automation (ICMA), 2014
IEEE International Conference on, pages
1773–1777, Aug 2014. doi:
10.1109/ICMA.2014.6885969.

C. Hilgers, H. Macht, T. Muller, and M.
Spreitzenbarth. Post-mortem memory analysis
of cold-booted android devices. In IT Security
Incident Management IT Forensics (IMF),
2014 Eighth International Conference on,
pages 62–75, May 2014. doi:
10.1109/IMF.2014.8.

Zhiqiang Lin. Reverse Engineering of Data
Structures from Binary. PhD thesis, CERIAS,
Purdue University, West Lafayette, Indiana,
August 2011.

Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang,
Dongyan Xu, and Xuxian Jiang. Siggraph:
brute force scanning of kernel data structure
instances using graph-based signatures. In 18th
Annual Network & Distributed System Security
Symposium Proceedings, 2011.

Joe Sylve, Andrew Case, Lodovico Marziale, and
Golden G. Richard. Acquisition and analysis of
volatile memory from android devices. Digital
Investigation, 8(34):175–184, 2012. ISSN
1742-2876. doi:
http://dx.doi.org/10.1016/j.diin.2011.10.003.

Volatility. The volatility framework, 2015. URL
http://www.volatilityfoundation.org/. Accessed
18th March 2015.

Pei-Hua Yen, Chung-Huang Yang, and TaeNam
Ahn. Design and implementation of a live-
analysis digital forensic system. In
Proceedings of the 2009 International
Conference on Hybrid Information
Technology, ICHIT ’09, pages 239–243, New
York, NY, USA, 2009. ACM. ISBN 978-1-
60558-662-5. doi: 10.1145/1644993.1645038.

