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ABSTRACT 

This paper describes a technique to acquire statistical information on the type of data object that goes into 
volatile memory. The technique was designed to run in Android devices and it was tested in an emulated 
Android environment. It consists in inserting code in the Dalvik interpreter forcing that, in execution time, 
every data that goes into memory is logged alongside with its type. At the end of our tests we produced 
Probability Distribution information that allowed us to collect important statistical information that made us 
distinguish memory values between references (Class, Exception, Object, String), Float and Integer types. 
The result showed this technique could be used to identify data objects of interest, in a emulated 
environment, assisting in interpretation of volatile memory evidence extracted from real devices. 
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1. INTRODUCTION  

In digital forensic investigations, it is sometimes 
necessary to analyse and interpret raw binary data 
fragments extracted from the system memory, 
pagefile, or unallocated disk space. Event if the 
precise data format is not known, the expert can 
often find useful information by looking for human 
readable ASCII strings, URLs, and easily 
identifiable binary data values such as Windows 
FILETIME timestamps and SIDs. Figure 1 shows 
an example of a memory dump, where a 
FILETIME timestamp can be easily seen (a 
sequence of 8 random binary values ending in 01). 
To date, the bulk of digital forensic research 
focused on Microsoft Windows platform, this paper 
describes a systematic experimental study to find 
(classes of) easily identifiable binary data values in 
Android platform. 

 

 

Figure 1: Hexadecimal view of a memory dump 

2. BACKGROUND 

Traditional digital forensics relies on evidences 
found in persistent storages. This is mainly due to 
the need to both sides of the litigation to reproduce 
and verify every forensic finding. The persistent 
storage can be forensically copied, providing a 
controllable way to repeat the analysis, getting to 
the same results. 

An alternative way is to combine the traditional 
forensics with the so called live forensics. The live 
forensics relies on evidences found in volatile 
memory to draw conclusions. This type of evidence 
features a lesser level of control and repeatability if 
compared with traditional evidences. On the other 
hand, live evidences may unravel key information 
to the progress of a case. However, the question 
regarding the reliability of the live evidence 
remains in place, mainly in two moments: the 
memory acquisition and the memory analysis. 

In the memory acquisition front, law enforcements 
and researchers are working to establish standard 
procedures to be used. These procedures could be 
based on physical or logical extraction. The 
physical extraction could need disassembling of the 
device or the use of JTAG as done by Breeuwsma 
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[2006]. The logical extraction can be more diverse, 
from interacting with the system with user 
privileges as done by Yen et al. [2009]; it could 
also gain system privileges through a kernel 
module as done by Sylve et al. [2012]; even use a 
virtual machine layer to have free access to the 
memory like done by Guangqi et al. [2014], among 
others. Regardless of the extraction method, there 
will be the need to analyse the extracted data. 

One challenge faced when analysing a memory 
dump is that application data is stored in memory 
following the algorithms of the program owning 
that memory space. Being aware of the variety of 
software running on nowadays devices, the task of 
interpreting the device’s extracted memory is 
complex. Some researchers are tackling this 
challenge taking different approaches. Volatility 
[2015] provides a customizable way to identify 
kernel data structures from memory dumps; Lin et 
al. [2011] used graph-based signatures to identify 
kernel data structures, Hilgers et al. [2014] uses the 
Volatility framework to identify structures beyond 
the kernel ones, identifying static classes in the 
Android system. 

A deeper memory analysis tool that would 
consistently interpret data structures from 
application software has not yet being developed. 
The in-depth memory analysis is normally done in 
a adhoc basis, interpreting the memory dump from 
the light of the reversed engineered application’s 
source code, as done by Lin [2011]. A broader 
approach, that would not depend on the 
application’s source code, could be powerful to 
deep memory analysis. 

This approach, not based on the application source 
code, would have advantages and disadvantages. 
As an advantage, this approach could be used in 
situations where the source code is unknown, 
unavailable, or legally disallowed to be reversed 
engineered. On the other hand, without the source 
code to deterministically assert the meaning of each 
memory cell, this method would need to take a 
probabilistic approach. The foundation for such 
approach is a probabilistic understanding of the 
memory data associated with their respective type. 
This paper uses the Android OS as environment to 
present a technique to gather the memory 
information associated with its type, making 
possible to have an probabilistic understanding of 

that data. 

3. ANDROID STRUCTURE 

The Android OS is an Operating System based on 
Linux, with extensions and modifications, 
maintained by Google. The OS was designed to run 
on a large variety of devices sharing same common 
characteristics [Ehringer, 2010]: (1) limited RAM; 
(2) little processing power; (3) no swap space; (4) 
powered by battery; (5) diverse hardware; (6) 
sandboxed application runtime. 

 

Figure 2: Architecture of Android OS 

To provide a system that could run on such diverse 
and resource limited devices, they decided to build 
a multi-layered OS(Figure 2). The 5 layers are: (1) 
Linux kernel; (2) Hardware Abstraction Layer 
(HAL); (3) Android runtime and Native libraries; 
(4) Android framework; (5) Applications. 

The Android OS is an hybrid of compiled and 
interpreted system. The boundary between 
compiled and interpreted execution is the Android 
runtime. The versions of the Android used in our 
experiments (android-2.3.6 r1 and android-4.3 
r2.1) feature Dalvik Virtual Machine (Dalvik VM) 
in the runtime package. All the programs running in 
the layers underneath Dalvik VM are compiled and 
all programs running in the layers above Dalvik 
VM are interpreted. The Dalvik VM hosts 
programs that were written in a Java syntax, 
compiled to an intermediary code level called 
bytecode and then packed to be loaded into Dalvik. 
When the software is launched inside Dalvik VM, 
each line of bytecode is interpreted into the 
machine code, normally in ARM architecture. 
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The Dalvik VM is implemented as a registerbased 
virtual machine. This mean that the instructions 
operate on virtual registers, being those virtual 
registers memory positions in the host device. The 
instruction set provided by the Dalvik VM consists 
of a maximum of 256 instructions, being some of 
them currently unused. Part of the used instructions 
is type specific, being those the ones chosen to be 
used to collect data and type information. 

The Dalvik VM instruction set is grouped in some 
categories: binop/lit8 is the set of binary operations 
receiving as one of the arguments a literal of 8 bits; 
binop/lit16 is the set of binary operations receiving 
as one of the arguments a literal of 16 bits; 
binop/2addr is the set of binary operations with 
only two registers as arguments, being the result 
stored in the first register provided; binop is the set 
of binary operations with three registers as 
arguments, two source registers and one destination 
register; unop is the set of unary operations with 
two registers as arguments, one source register and 
one destination register; staticop is the set of 
operations that perform over static object fields; 
instanceop is the set of operations that perform 
over instance object fields; arrayop is the set of 
operations that perform over array fields; cmpkind 
is the set of operations that perform comparison 
between two floating point or long; const is the set 
of operations that move a given literal to a register; 
move is the set of operations that move the content 
of a register to another register. 

Each of those categories has a number of 
instructions specifically designed to operate over 
some data type. The whole instruction set 
distinguishes 12 data types, namely: (1) Boolean; 
(2) Byte; (3) Char; (4) Class; (5) Double; (6) 
Exception; (7) Float; (8) Integer; (9) Long; (10) 
Object; (11) Short; (12) String. 

4. MODULAR INTERPRETER (MTERP) 

As the Android OS is open source, the source code 
of the OS [Google, 2015], including the Dalvik 
VM, is available to be downloaded and modified. 
By inspecting the Dalvik VM source code in 
details, it was possible to identify that the 
interpreter2 would be a strong candidate to host the 

                                                        
2 The interpreter is located on the following directory of the 
Android source tree: /android/dalvik/vm/mterp 

data collecting code. The features that most suit our 
needs are: (1) there is an different entry for each 
bytecode instruction, called opcode; (2) several of 
the opcodes of the Dalvik VM are type related. 
Therefore, it is a good point to place the code 
designed to collect the data, relating values and 
types that goes to memory. 

Even though the Dalvik interpreter is conceptually 
the central point from where every single line of 
Dalvik bytecode should pass through, there is one 
exception. The Android OS features an 
optimization element called Just In Time (JIT) 
compilation that can bypass the Dalvik interpreter 
[Google, 2010]. The JIT compiler is designed to 
identify the most demanded tracks of code that run 
over the Dalvik VM. After identified, those tracks 
would be compiled and, next time they were 
demanded, the JIT would call the compiled track, 
instead of calling the interpreter. This way, the code 
we use to collect our data would not be executed 
and the collected data would not be accurate. 

JIT configuration # of instructions logged 
WITH JIT = true 2,676,540 
WITH JIT = false 3,643,739 

Table 1: Number of instructions logged during the 
Android booting process 

In our tests, the JIT compiler would skip, on 
average, 26.5% of the type bearing instructions 
during the Android booting process(Table 1). To 
avoid this source of error, it was necessary to 
deactivate the JIT compiler on our test Android OS. 
The Android system contains an environment 
variable WITH JIT that is used to deploy an 
Android system with or without JIT. In order to 
deactivate the Just In Time compilation, we edited 
the makefile Android.mk3 and forced the WITH 
JIT to be set to false. 

Having deactivated the JIT, it is necessary to insert 
the logging code into the interpreter. The interpreter 
source code is put together in a modular fashion, 
for this reason it is called modular interpreter 
(mterp). For each target architecture variant there 
will be a configuration file in the mterp folder4. The 
                                                        
3 The Android.mk is located on the following directory of the 
Android source tree: /android/dalvik/vm 
4 The mterp folder is located on the following directory of the 
Android source tree: /android/dalvik/vm/mterp 
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configuration will define, for each Dalvik VM 
instruction, which version of ARM architecture will 
be used and where the corresponding source code is 
located. In order to log all the designed instructions, 
several ARM source code files, scattered in the 
mterp folder, will need to be edit accordingly, and 
any extra subroutine could be inserted in the file 
footer.S. After all the codes are edited, it is required 
to run a script called rebuild.sh, located in the 
mterp folder, that will deploy the interpreter5. 
Finally, the Android system, that will contain the 
modified interpreter, need to be built. 

When executing the deployed Android OS, the data 
extraction takes place. The extracted data is stored 
in a single file with one entry per line as shown in 
Listing 1. The key information we can find in each 
entry are the two last columns, containing the type 
and the hexadecimal value stored in memory. 

Listing 1: Unprocessed log sample 

D(285:298) Object  = <0x41a1fc68>  
D(285:298) Int  = <0x00034769>  
D(285:298) Object  = <0x41a1fc68> 
D(285:298) Int  = <0x00011db5> 
D(285:298) Byte  = <0x2f> 
D(285:298) Int = <0x00000000> 
D(285:298) Int = <0x0000002f> 
D(285:298) Char = <0x2f> 

 

Having this file, we process it to separate one data 
type on each file and exclude any extra information 
apart from the hexadecimal value, as depicted in 
the Figure 3. 

                                                        
5 The interpreter is located on the following directory of the 
Android source tree: /android/dalvik/vm/mterp/out!

 

Figure 3: Log processing 

Summing up, to extract the memory values 
associated with their respective types we needed to 
do the following: 

• deactivate the JIT Compiler from an 
Android OS; 

• inject code in the Dalvik Interpreter to log 
types and values on each interpreted 
typebearing instruction ; 

• run the adjusted Android OS to collect data 
on the logs; 

• process the logged data; 

The deactivation of the JIT compiler and the 
modification in the Dalvik interpreted code, 
expectedly, generated an execution overhead. 
Considering the average booting time, the logging 

procedure seems to have effected more the 
response time than the JIT deactivation. The Table 
2 shows the average booting times with and without 
JIT, as well as with and without the logging code. 

 Log = off Log = on 

WITH JIT = true 62s 2176s 
WITH JIT = false 62s 3026s 

Table 2: Average booting time in seconds 

5. RESULTS 

Having all the processed logs, it was possible to 
extract some statistical information from them. The 
Table 3 shows in what proportion each type appear 

Log 
Processing mterp.log 

Android 
Emulator 

Boolean.log 

Byte.log 

. . . 

String.log 

Extraction 



 
 

Proceedings of 10th Intl. Conference on Systematic Approaches to Digital Forensic Engineering 

 17 

in the logs. The table makes clear that the Int type 
prevail over the other types, with 54.3% of the 
appearances. Other types with a rather common rate 
of occurrence are Byte (8.17%), Char (13.19%) and 
Object (24.00%). The remainder of the types have a 
percentage lower than 1%. 

Type # of occurrences % of total 
Bool 6,512 0.1787% 
Byte 297,578 8.1668% 
Char 444,163 12.1898% 
Class 1,454 0.0399% 
Double 836 0.0229% 
Exception 168 0.0046% 
Float 6,374 0.1749% 
Int 1,978,652 54.3028% 
Long 7,837 0.2151% 
Object 874,196 23.9917% 
Short 3,034 0.0833% 
String 22,935 0.6294% 
Total 3,643,739 100.0000% 

Table 3: Booting time in seconds 

At this point, the 32-bit types are being highlighted. 
They are: (1) Class; (2) Exception; (3) Float; (4) 
Integer; (5) Object; (6) String. Each of those 6 
types have its own probability distribution of values 
plotted on the Figure 4. 

From the distributions it is possible to spot the 
similarity among the types: (1) Class; (2) 
Exception; (3) Object; (4) String. All 4 of them 
have a predominant peak a little after the value 
0x4000000. This similarity can be explained by the 
fact that those 4 types are indeed references, 
therefore, pointers to a memory address. If focusing 
only on the values around 0x40000000, the Float 
type could be confused with the reference ones, 
because it also displays a peak around 0x40000000, 
however a much broader one, moreover, it has an 
second lower peak around 0xc0000000. The Int 
type displays occurrences along the whole spectrum 
of values, featuring two more relevant peaks. One 
peak around 0x00000000 and the other peak around 
0xffffffff. Those two peaks could be explained by 
an greater occurrence of integer with small absolute 
values, being them of positive and negative signal, 
respectively. 

 

Figure 4: Probability distribution of values by 32-
bit type (Log scale) 

6. CONCLUSION 

This paper explained a technique to capture 
memory data along with their corresponding data 
type in an emulated Android OS. This technique 
required deactivation of the optimization process 
called Just In Time compilation and the 
modification of the interpreter ARM code. The 
technique creates an expected overhead on the 
Android execution time. As this technique was only 
designed to run in emulated Android, this overhead 
is not an issue. The technique allowed us to collect 
important statistical information that made us 
distinguish memory values between references 
(Class, Exception, Object, String), Float and Integer 
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types. Beyond this specific test case, this technique 
could be use to build an statistical data corpus of 
Android memory content. This data corpus may 
become a tile on the work of paving the ground to 
the development of a consistent deep memory 
analysis tool. 
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